Laboratory for Integrated

Micro-Mechatronic Systems

Roberta Menezes and Adèle Dramé-Maigné and Valérie Taly and Yannick Rondelez and Guillaume Gines

Droplet-based microfluidics has permeated many areas of life sciences including biochemistry, biology and medicine. Water-in-oil droplets act as independent femto- to nano-liter reservoirs, enabling the parallelization of (bio)chemical reactions with a minimum sample input. Among the range of applications spanned by droplet microfluidics, digital detection of biomolecules, using Poissonian isolation of single molecules in compartments, has gained considerable attention due to the high accuracy, sensitivity and robustness of these methods. However, while the droplet throughput can be very high, the sample throughput of these methods is poor in comparison to well plate-based assays. This limitation comes from the necessity to convert independently each sample into a monodisperse emulsion. In this paper, we report a versatile device that performs the quick sequential partitioning of up to 15 samples using a …

Streamlined digital bioassays with a 3D printed sample changer
Scroll to top